Temporal stability of small disturbances in MHD Jeffery-Hamel flows
نویسندگان
چکیده
In this paper, the temporal development of small disturbances in magnetohydrodynamic (MHD) Jeffery–Hamel flows is investigated, in order to understand the stability of hydromagnetic steady flows in convergent/divergent channels at very small magnetic Reynolds number Rm . A modified form of normal modes that satisfy the linearized governing equations for small disturbance development asymptotically far downstream is employed [A. McAlpine, P.G. Drazin, On the spatio-development of small perturbations of Jeffery–Hamel flows, Fluid Dyn. Res. 22 (1998) 123–138]. The resulting fourth-order eigenvalue problem which reduces to the well known Orr–Sommerfeld equation in some limiting cases is solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The results indicate that a small divergence of the walls is destabilizing for plane Poiseuille flow while a small convergence has a stabilizing effect. However, an increase in the magnetic field intensity has a strong stabilizing effect on both diverging and converging channel geometry. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Heat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel
In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...
متن کاملAnalytical Investigation of MHD Jeffery–Hamel Nanofluid Flow in Non-Parallel Walls
In this paper, Homotopy perturbation method (HPM) has been applied to investigate the effect of magnetic field on Cu-water nanofluid flow in non-parallel walls. The validity of HPM solutions were verified by comparing with numerical results obtained using a fourth order Runge–Kutta method. Effects of active parameters on flow have been presented graphically. The results show that velocity i...
متن کاملAnalytical Investigation of Jeffery-hamel Fow with High Magnetic Field and Nano Particle by RVIM
Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method (RVIM) which is an accurate and a rapid convergence method in finding the approximate solution fo...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملJeffery Hamel Flow of a non-Newtonian Fluid
This paper presents the Jeffery Hamel flow of a non-Newtonian fluid namely Casson fluid. Suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary differential equation. Variation of Parameters Method (VPM) is then employed to solve resulting equation. Same problem is solved numerical by using Runge-Kutta order 4 method. A c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 53 شماره
صفحات -
تاریخ انتشار 2007